

Yinlong Dai

+1-9178636190 | daiyinlong@vt.edu

Website: yinlongdai.github.io | GitHub: github.com/YinlongDai | LinkedIn: [Yinlong Dai](https://www.linkedin.com/in/yinlong-dai/)

EDUCATION

Virginia Polytechnic Institute and State University (Virginia Tech), VA
Ph.D. in Mechanical Engineering

Sep 2024 – Present
GPA: 4.00 / 4.00

New York University, NY

Bachelor of Science in Computer Science, Honors Program

Minor: Robotics / GPA: 3.865 / 4.00

Undergraduate Honors: Dean's List; Dean's Undergraduate Research Fund (DURF) Award; Best in Poster Presentation at the 50th NYU Annual Research Conference; CS Prize for Academic Excellence in the Honors Program

RESEARCH

Collaborative Robotics Lab (Collab) — Ph.D. Researcher

Aug 2024 – Present

Virginia Tech | *Advised by Prof. Dylan P. Losey*

Research focus: Imitation Learning, Human–Robot Interaction, Vision-Language Models for Robotics

Generalizable Robotics and AI Lab (GRAIL) — Undergraduate Researcher

Mar 2023 – Aug 2024

New York University | *Advised by Prof. Lerrel Pinto*

Research focus: Dexterous Manipulation with Image and Tactile Sensing, Reinforcement Learning, Multimodal Policy Learning

PUBLICATIONS

Under Review / Preprints

Y. Dai, B. A. Christie, D. J. Evans, D. P. Losey, S. Stepputtis. Language Movement Primitives: Grounding Language Models in Robot Motion. (*Under Review, 2026*)

Y. Dai*, R. Ramirez Sanchez*, R. Jeronimus, S. Sagheb, C. M. Nunez, H. Nemlekar, D. P. Losey. CIVIL: Causal and Intuitive Visual Imitation Learning. (*Under Review, 2025*)

Conference Papers

Y. Dai, A. Keyser, D. P. Losey. Prepare Before You Act: Learning From Humans to Rearrange Initial States. (*Accepted to IEEE International Conference on Robotics and Automation, ICRA, 2026*)

I. Guzey, **Y. Dai**, G. Savva, R. Bhirangi, L. Pinto. HuDOR: Bridging the Human to Robot Dexterity Gap through Object-Oriented Rewards. (*Accepted to IEEE International Conference on Robotics and Automation, ICRA, 2025*)

A. Iyer, Z. Peng, **Y. Dai**, I. Guzey, S. Haldar, S. Chintala, L. Pinto. OPEN TEACH: A Versatile Teleoperation System for Robotic Manipulation. (*Accepted to Conference on Robot Learning, CoRL, 2024*)

I. Guzey, **Y. Dai**, B. Evans, S. Chintala, L. Pinto. See to Touch: Learning Tactile Dexterity through Visual Incentives. (*Accepted to IEEE International Conference on Robotics and Automation, ICRA, 2023*)

Z. Xue, **Y. Dai**, Q. Lei. Exploring the Diversity of Label-irrelevant Patches: Efficient Active Learning via Pretrained ViTs. (*Accepted to Conference on Parsimony and Learning, PMLR, 2024*)

EXPERIENCE

Language Movement Primitives: Grounding Language Models in Robot Motion Sep 2025 – Jan 2026

- Architected and implemented the Language Movement Primitives (LMP) framework to ground robot motion policies in a low-dimensional semantic parameter space using Dynamic Movement Primitives (DMPs).
- Implemented and benchmarked state-of-the-art foundation model baselines, including fine-tuned Vision-Language-Action (VLA) models, across 20 real-world manipulation tasks.
- Built a 3D open-vocabulary perception module leveraging RGB-D sensing to abstract environments into semantically interpretable representations for language models.

Prepare Before You Act: Rearranging Initial States	May 2025 – Sep 2025
<ul style="list-style-type: none"> Learned a spatiotemporal transformer-based corrective robot policy from action-agnostic human videos and point flow representations. Implemented and benchmarked diffusion-based robot action policies and real-world dynamics models for model-based planning. 	
CIVIL: Causal and Intuitive Visual Imitation Learning	Sep 2024 – Apr 2025
<ul style="list-style-type: none"> Architected and implemented a transformer-based visual manipulation policy. Built a multimodal data collection system enabling users to communicate task intent through both ArUco markers as visual signals and natural language instructions. Learned visual representations encoding task-relevant human intent from multimodal demonstration data. 	
Bridging the Human to Robot Dexterity Gap through Object-Oriented Rewards	Jan 2023 – Sep 2024
<ul style="list-style-type: none"> Mainly responsible for building the data collection pipeline, projecting human hand keypoints captured via Meta Quest into a fixed physical world frame through visual calibration, enabling dexterous policy learning from human egocentric demonstrations. Explored reliable camera streaming from the VR device, enabling video data collection and policy deployment using onboard VR cameras. 	
OPEN TEACH: A Versatile Teleoperation System for Robotic Manipulation	Sep 2023 – Feb 2024
<ul style="list-style-type: none"> Mainly responsible for integration of the teleoperation system with an Allegro Hand mounted on a Kinova robotic arm. 	
See to Touch: Learning Tactile Dexterity through Visual Incentives	May 2023 – Sep 2023
<ul style="list-style-type: none"> Involved in creating the Tactile Adaptation from Visual Incentives (TAVI) framework that aims to achieve generalization ability through training an encoder with 2.5 hours of tactile-based play data on an Allegro hand and uses online reinforcement learning for dexterous manipulation tasks. Mainly responsible for creating a replay buffer for online reinforcement learning and assessed long-horizon robustness of TAVI by training and testing it on multiple concatenated tasks. Evaluated the performance of TAVI framework through testing five challenging real-world manipulation tasks. 	
T-Dex: Dexterity from Touch	Feb 2023 – May 2023
<ul style="list-style-type: none"> Worked on training dexterous manipulation policies on a four-fingered dexterous Allegro hand with XELA tactile sensors. Assisted in evaluating T-DEX across five challenging tasks, such as opening a book, bottle cap opening, and precisely unstacking cups. 	
Efficient Active Learning via Pretrained ViTs for Medical Image Classification	NYU, NY
<i>Research assistant, Mentored by Assistant Professor Qi Lei</i>	Sep 2022 – Sep 2023
<ul style="list-style-type: none"> Participated in developing a new active learning (AL) framework based on self-supervised learning with Vision Transformers to learn the approximately minimally sufficient representations for medical image classification. Trained a lightweight encoder to transfer the representation closer to minimally sufficient through a Data Augmentation method for localizing and augmenting label-irrelevant patches. Evaluated the effectiveness and efficiency of the framework across various datasets and AL strategies. 	
Surgical Sim: Omentum Simulation	NYU, NY
<i>Research assistant, Mentored by Clinical Assistant Professor Gizem Kayar</i>	Sep 2022 – May 2024
<ul style="list-style-type: none"> Explored and tested various setups and frameworks for the haptic-integrated & physically-based interactive simulation of omentectomy surgery with Unity, such as 3D Systems Haptic Plugin and Obi Softbody Plugin. Designed a model of the interaction between deformable omentum and rigid surgery tools based on a mass-spring system. Awarded the Dean's Undergraduate Research Fund (DURF) Grant (Spring 2023); received Best Poster Presentation at the 50th NYU Annual Research Conference. 	

SKILLS

Languages: English, Mandarin

Programming: Python, Java, C/C++, C#, SQL, MATLAB

Frameworks & Tools: PyTorch, Matplotlib, MongoDB, Git, Linux, Excel, Jupyter Notebooks, ComfyUI, Unity